__

Tips for Supporting 11i (preparing for 11i ‘Waste Management’)

Lynne Paulus

Fair, Isaac and Company, Inc.

Introduction

There are numerous technical support issues that arise once you are live on Oracle Applications Release 11i. Many user actions cause temporary data to be inserted into 11i tables. These actions include: User Login, File-Export, WorkFlow processing and Order Management messages. If left unchecked, this data can grow exponentially and can even cause other processing to fail. This paper will outline where this data is generated and suggest techniques for proper ‘Waste Management’. Several custom SQL scripts are provided that you can use to research potential temporary data problems. Standard Oracle-provided Concurrent Manager cleanup programs are identified. Several of these standard programs do not appear in Oracle 11 manuals so documentation can be difficult to find. You should schedule these cleanup jobs so that you take care of these 11i ‘Waste Management’ issues allowing you to move onto more important and challenging support issues.

11i presents some other technical support challenges that may be new to your technical staff. This paper will cover issues including how to: manage11i multiple home directories, map 11i Users to their Oracle sessions, identify who is causing lock contention, adjust Large Objects (LOBs), monitor the new Temporary tablespace, pin heavily used objects, and use the ‘alter table move’ command. These issues and more will be covered from the perspective of someone who has been ‘in the trenches’ supporting 11i. The paper is not intended as a comprehensive list of 11i technical support issues and cleanup programs. The paper’s focus is to highlight those issues that impacted our site.

Note that the terminology used in this paper is specific to 11i running on Unix platforms. Most issues noted will also apply to non-Unix installations. However, some of the specific Operating System terminology used may be different.

Target Audience

This paper’s intended audience is Oracle Application Database Administrators, Oracle Application System Administrators and Oracle technical support staff. The issues apply to anyone doing technical support of 11i. A basic understanding of technical terminology used in Oracle 8i databases and in Oracle Applications is very helpful in understanding the concepts presented.

Terminology

11i: The Oracle E-Business Applications Suite, Release 11.5.x (e.g. 11.5.7)

8i: The Oracle RDBMS version 8.1.x (e.g. 8.1.7)

$ORACLE_HOME: The directory location containing Oracle RDBMS code.

$APPL_TOP: The directory location containing the majority of Application’s code (e.g. Concurrent Programs, Forms, etc)

Some Concurrent Programs for Cleaning up Temp Data:

	Concurrent Program Name
	Program Description

	Delete data from temporary table

	Remove login data

	End Time Stamp User Logins

	Cleanup audit data due to unclean 11i exit

	Purge Signon Audit Data

	Remove audit trail data after a period of time

	Purge Obsolete Generic File Data

	Cleanup File/Export temp data

	Purge Obsolete Workflow Runtime Data

	Workflow related data

	Purge Concurrent Request and/or Manager Data

	Routine maintenance of concurrent request tables and files

	Message Purge

	Order Management Processing Messages

	Figure: 1

Cleanup of Login Data

When users log into 11i, data is inserted into numerous ‘icx’ tables such as icx_sessions, icx_text, and icx_failures. These tables were originally associated only with the Oracle Self Service applications but now all users logging into 11i using the Personal Home Page will cause rows to be inserted into these tables. The easiest way to determine whether your users’ actions are causing rows to be inserted into these tables is to check the contents of these tables in a test or production database that is actively used by 11i users. By the time I realized I had a problem on my system, the icx_text table contained more than 150,000 rows. These tables will continue to grow until you delete rows. Oracle provides a cleanup script for these tables. It is called icxdltmp.sql and is located in $ICX_TOP/sql. Oracle has a Concurrent Program that calls this script called ‘Delete data from temporary table’ which is registered to the application, “Oracle Self-Service Web Applications”. You need to add this program to a Request Group like ‘System Administrator Reports’ and schedule it to run routinely. I run it once a week. Some sites might want to keep this login information longer. If you want to modify the length of time data is kept, make a copy of ixcdltmp.sql and register a custom program rather than modifying Oracle’s standard program. You should determine the schedule that best meets your company’s needs. The ck_icx.sql script in Exhibit 1 can be used to count the current number of rows in these tables.

Cleanup of Sign-on Audit Data

You can run 11i using the Sign-on Auditing feature. The Sign-on Audit functionality has existed prior to 11i. It is the only way I know to tie a user’s application login with their processes on the Database and Forms Server nodes. Therefore, many companies may now want to take advantage of this standard functionality. There are a few data clean-up issues that relate to this feature.

The auditing is controlled by the Site Profile Option called ‘Sign-On:Audit Level’. There are four possible auditing levels. If you set this profile option to ‘NONE’, then you don’t have a way to monitor Oracle Apps users that are currently logged-in. With no Sign-on auditing, you will see no one logged-in when you use the ‘Monitor Users’ form, not even yourself. If you set Sign-on Audit to ‘USER’ then you can monitor user logins and relate an Oracle Apps login to the processes they are using on your Database Server and Forms Server nodes. You can also set Sign-on Auditing to ‘RESPONSIBILITY’ or ‘FORM’ which results in more detailed monitoring of user access. Audit rows remain in the audit tables after a user leaves the application. The Sign-on Audit functionality relates to data cleanup and ‘garbage collection’ in two ways. The Standard Concurrent Manager programs that will be covered are: ‘End Time Stamp User Logins’ and ‘Purge Signon Audit Data’.

The program ‘End Time Stamp User Logins’ corrects data in the fnd_logins table relating to ‘unclean’ exits from 11i. When users logoff cleanly, the end_time column in the fnd_logins table gets updated. If a user does not exit the application cleanly, end_time does not get updated at logoff, making it appear that the user is still logged in. The Concurrent Program fills in end_time on rows for users who are no longer logged-in. The program checks whether there is a database process that matches the login. If no database process matches, then it updates the end_time column. Those users who are no longer logged in but whose database process is still active will not be updated. These logins have left orphan database processes. You will need to add the program to an appropriate Request Group before you can run it. I added it to the System Administrator Reports group. Any company that uses Sign-on Audit should run this program at least daily. Otherwise you see incorrect information about who is logged-in and it is more difficult to identify potential orphan sessions. Note that this program updates but does not delete any audit rows.

The second Concurrent Program that relates to Sign-on Audit data is called ‘Purge Signon Audit Data’. This program deletes Sign-on Audit data so that it does not grow indefinitely. You should decide how long your company wants to keep this audit data and run this program with the appropriate parameters. I recommend turning the profile option Sign-on:Audit Level to at least USER level and deleting rows once per week. You may want to purge rows more or less frequently depending on your company needs. See Exhibit 2 for the script fnd_logins.sql that will show the number of rows in each of the tables relating to Sign-on Audit.

Cleanup of File-Export Temporary Data

Many 11i users take advantage of the ‘File-Export’ functionality. This functionality was specifically designed for use on ‘Folder’ forms so users could export the data displayed on the screen to Excel. Many of the users at my company use this functionality. We had been live on 11i for a few months when our users were unable to use File-Export. I found errors in the Oracle alert file like:

 ‘ORA-1690: unable to extend lobsegment APPLSYS. SYS_LOB0000145205C00002$$ by 27310 in tablespace APPLSYSD’. You can run the ck_lob.sql script (Exhibit 3-3) to determine which table and column this ‘lobsegment’ relates to. I determined that this error message referred to a ‘lobsegment’ from the fnd_lobs table. See more about LOBs below.

At first I thought the error was because our users had been using the File Attachment functionality heavily which uses the fnd_lobs table. After further research, I determined that most of the space used in fnd_lobs and the related lobsegment was caused by rows with program_name = ‘export’.

The root cause of the problem was that File-Export temporarily inserts rows into the fnd_lobs table. Unfortunately, the temporary rows remain in the fnd_lobs table after the user completes their File-Export. To cleanup this data you need to routinely schedule the Concurrent Program ‘Purge Obsolete Generic File Data’ which will remove this unneeded data. Run the script fnd_lobs.sql in Exhibit 3-1 to check the state of the data in your fnd_lobs table before the cleanup.

Adjusting Storage for Large Objects (LOBs)

There are numerous LOB (Large Objects) in 11i whose storage you may want to adjust. In the File-Export example above, a lobsegment called APPLSYS.SYS_LOB0000145205C00002$$ needed to have its storage adjusted. This lobsegment relates to the fnd_lobs table via a column called file_data that is type ‘BLOB’ (Binary Large Object). Since this column is ‘BLOB’ type, the fnd_lobs.file_data column stores a locator value that points to the data location in a separate

‘lobsegment’. In my database, the lobsegment holding this data for the file_data column is called APPLSYS.SYS_LOB0000145205C00002$$. You cannot adjust storage for the lobsegment by referencing the segment directly. You need to use the ‘alter table’ command with the ‘modify LOB’ clause. For example, I used the following command to adjust my fnd_lob lobsegment, reducing the PCTINCREASE from 50% to 0% and adjusting next extent size to 1 megabyte.

 ALTER TABLE applsys.fnd_lobs MODIFY LOB(file_data) (STORAGE (PCTINCREASE 0 NEXT 1M));

See Exhibit 3-3 for ck_lob.sql that displays all LOBs in your database so that you can adjust their sizing as needed after you’ve been live a short time. I recommend that you adjust all 11i LOBs ‘pctincrease’ from 50 to zero. You will probably want to adjust the next_extent size at the same time.
Workflow Messages

Many applications modules within 11i now use Workflow. Even if you have not customized any workflows, you will still have workflow related data that needs to be cleaned up. You should run the program ‘Purge Obsolete Workflow Runtime Data’ routinely. I currently have this program scheduled to run each weekday night. You will need to determine a schedule that meets your company’s needs.

Concurrent Manager Tables

It is important to run the program ‘Purge Concurrent Request and/or Manager Data’ routinely. This program will cleanup numerous concurrent processing related tables plus files that related to concurrent requests. Currently my company keeps this data for 45 days so that it always includes a prior month-end close. Each company has their own strategy about how long they keep Concurrent Manager data available for their users. You need to have your strategy in place before you go live so that data in the tables related to concurrent requests does not grow until it causes problems. This program has existed in prior releases of Oracle Applications so it is well documented. I have encountered a few problems with this program in 11i. Once, it removed the internal manager log file causing the Concurrent Manager to hang. Another time it stopped cleaning up out and log files causing the available disk space in that directory to become too low. There are patches for both of these problems that you can research to see if they apply to your version of 11i.

OM Message Purge

If your company uses Order Management (OM), then there are two OM tables that can grow indefinitely and can cause problems in OM. These tables are OE_PROCESSING_MSGS and OE_PROCESSING_MSGS_TL. These tables hold data about OM processing and can be useful in researching problems. They also hold rows that relate to OM processing that has already been completed. These tables grow very quickly and can cause performance problems in OM. Originally for 11i, Oracle did not provide a Concurrent Program to cleanup the completed OM processing messages. Oracle provides a form called ‘Process Messages’ to manage these messages. On the form, you can query-up messages and then use the delete all button to delete all the messages that you queried. This is not a very efficient way to routinely manage these tables. Fortunately, Oracle delivered a Concurrent Program called ‘Message Purge’ via a patch (number 1574584) to serve this same purpose. Check whether you already have ‘Message Purge’ before acquiring the patch. Routinely schedule this program to keep the number of rows in these tables to a reasonable number. Before I ran this program for the first time I had 750,000 rows in the oe_processing_msgs table. After my first run, only 80,000 rows remained. I have the ‘Message Purge’ program scheduled to run each evening.

__
Other 11i Technical Support Issues:

Managing 11i multiple Home Directories:

The 11i technical architecture is complicated. It requires that you support several ‘code bases’ on each node in your physical architecture. Each node in your environment is a separate box. The 11i environment is considered a ‘3-Tiered’ architecture. It is important to realize that ‘tiers’ are more a ‘logical’ concept rather than a physical one and that they are not equivalent to nodes. The 11i technology stack has many Oracle components. Each of these components goes into a ‘Home Directory’ on one or more of your nodes. It can take some time before the technical team truly understands ‘which file systems on which boxes support which logic in 11i’.

My 11i installation uses the Oracle 11i installation configuration called ‘Two-Node’. Both nodes are separate physical boxes. My site uses the standard Two-Node configuration: one node contains the Database Server, Concurrent Processing Server and the Report Server. The other node contains the Web Server and the Forms Server. The first box is often called ‘The Database Server’ and the second box is often called ‘The Application Server’. This is misleading since application code is installed and running on both boxes. The following diagram shows our Two-Node configuration. Notice the Tier names on the left do not directly relate to an actual box.

[image: image1.wmf]Box 1 (Solaris)

Desktop PC (Windows)

Box 2 (Solaris)

Web

Browser

Oracle

Forms

Server

Oracle

Reports

Server

Apache HTTP

Server

Oracle

Concurrent

Processing

Server

Oracle

Admin

Server

Database Tier

Application Tier

Desktop Tier

Fair Isaac Oracle Apps 11i Two-Node Configuration

Oracle Applications 11i

Oracle Data Server

Oracle 9iAS

Discoverer

Server

Figure 2:
File Systems in a Two-Node configuration contain at least the following code bases:

Node 1:

1) $ORACLE_HOME for rdbms (8.1.7)

2) $ORACLE_HOME for Concurrent Manager, Admin Server and Report Review Agent (8.0.6)

3) $APPL_TOP for Concurrent Manager and Admin Server

4) ”COMMON_TOP” (not an environment variable, tends to contain same contents as ‘Common’ on Node 2 but not all code is used here)

Node 2:

1) $APPL_TOP for 11i Forms

2) $ORACLE_HOME (8.0.6), Forms Server runs out of this home

3) HTTP Server Top for Apache Web Server (usually oracle/iAS, contains Apache after 11.5.1)

4) “COMMON_TOP” (contains variety of code bases including Jinitiator, $OA_HTML, $JAVA_TOP and clone directories)

A source of major confusion is that some directories and files exist on both nodes but are only used on one of those nodes. For example, both nodes have the code base for HTTP Apache Web Server (usually under oracle/iAS directory). However, patches to Apache need to be applied only on the Web Server node. The technical team must be vigilant to make changes to the correct home directories on the correct machine.

The multiple homes can cause problems during patch application. We had an incident where a DBA installed a patch that required fixes to both nodes. After the patch, the problem the user was having with a form was still occurring which misled us to believe that the patch did not fix the problem. The patch appeared to have been applied but it had not been applied on the Forms Server node. The solution was easy, we ran the patch drivers also on the Forms Server node and the fix was complete. This experience emphasizes how important patch analysis and patch tracking becomes in 11i.

Patch Management and Cloning

You use 11i cloning when you want to create or refresh another 11i environment based on a current 11i environment. At my company, we have one Production 11i environment and 6 clones of that environment for purposes of testing, development, training, patching, etc. The 11i cloning process is beyond the scope of this paper however there is an important support note that should be made here. You need to meticulously maintain a ‘Patch Application Log’ document to track each change that is made to your systems. Most 11i patches that you apply in your Production environment will be to the files under $APPL_TOP directories on your Concurrent Processing Server and your Forms Server. Those file changes under $APPL_TOP will automatically get propagated when following Oracle’s 11i Clone Process. Patches made to file systems outside $APPL_TOP, $OA_HTML and $JAVA_TOP will not get copied during a Clone. The person applying patches must be acutely aware of the impact of each patch applied. Your patch log document should include a column for ‘Reapply’. This column indicates that this patch must be manually reapplied to each 11i environment that you have because it is not fully copied during the Clone process.

An example of a patch that needs to be ‘Re-applied’ in each environment is an upgrade to Jinitiator. This upgrade changes files under $COMMON_TOP/util/jinitiator, $FND_TOP/resource, and $OA_HTML. The files in $FND_TOP and $OA_HTML will be refreshed by the cloning procedure. The files under $COMMON_TOP/util will not be brought over while cloning. In addition, the target database’s appsweb.cfg file is automatically copied back into $OA_HTML during the postclone process. This results in a database that has an appsweb.cfg file pointing to an old version of Jinitiator but an $OA_HTML/oajinit.exe file that is the newer version. This is an incomplete upgrade to Jinitiator and will cause user problems in the clone target environment. The way to resolve this problem is to mark this change in your Patch Application Log as one that must be ‘Re-applied’ and manually do the steps for upgrading to the new Jinitiator in your each of your cloned environments.

Large Number of 11i Objects

My 11i Production database contains about 10,000 tables, 20,000 indexes, 15,000 views, and 18,000 packages. These totals can be even higher if you upgraded to 11i rather than performing a ‘Fresh Install’. No technical person can be familiar with the purpose and contents of all of these 11i tables, views, etc. It is important to set realistic expectations of management, business analysts and users. The technical team needs to investigate each issue as it arises and learn more in-depth about the logic surrounding the specific problem as needed. In some respects, 11i can be a nightmare and discouraging for the technical support team. It is important to set realistic personal and management expectations about the speed that 11i changes can be made and how quickly problems can be solved. The good news is that technical people should have plenty of challenges to keep them stimulated!

The impact of ‘Server-Partitioned’ mode

Oracle designed 11i to run the database from an 8i ORACLE_HOME but did not ‘rebuild’ all of the Application components with an 8i ORACLE_HOME. Therefore, the Application components are still running out of an 8.0.6 ORACLE_HOME. This requires the Applications to run in what is called ‘Server-Partitioned’ mode. For example, when you login as the account that runs the Concurrent Manager (e.g. applmgr), your $ORACLE_HOME variable is set to the 8.0.6 $ORACLE_HOME and $TWO_TASK is set to your correct ORACLE_SID. The database will not allow you to directly connect if your $ORACLE_HOME setting is different than that which was used to start the database. Therefore, the database connection is handled via Sql*Net based on the $TWO_TASK setting. These connections are often on the same box as the database but are not considered ‘local’.

Server-Partitioned mode makes technical support and problem solving more complex. Your unix Oracle process now has a unix parent process id (pid) of ‘1’, meaning that the parent is unknown. Before Server-Partitioned mode, the parent pid for a concurrent manager Oracle connection would have been the actual unix pid so the relationship was clear from a unix perspective.

In order to identify the processes for specific database activity such as a Concurrent Manager job, you must look into database views (v$process, v$session) to find the relationship between the unix database connection process and the unix parent process running the activity. See Exhibit 4-1 for a script called list_sess.sql that maps Oracle sessions and processes to the activity that started them. The following is sample output from list_sess.sql. Note that the script did not generate the arrows on the far right of the report. They were added here for clarity in the following section.

Oracle Sessions, Processes and Parent Processes

 Ora Ora DB Serv

Sess Proc Process Parent

 id id OS User USERNAME PID PID term PROGRAM

---- ---- ---------- -------- --------- ------ ------ ---------

 126 38 appprd APPS 6377 1252 <- Holding Lock

 78 65 appprd APPS 6918 6637

 45 65 appprd APPS 6918 6637

 7 80 appprd APPS 6339 19889

 115 80 appprd APPS 6339 19889

 65 54 appprd APPS 4696 3147

 104 54 appprd APPS 4696 3147

 89 51 appprd APPS 5856 4507

 100 51 appprd APPS 5856 4507

 82 60 appprd APPS 5962 4785

 175 60 appprd APPS 5962 4785

 15 25 appprd APPS 1340 1308 <- Con Mgr request

 19 16 appprd APPS 864 862

 141 74 JanWong APPS 2570 1516:152 JANWO ADIQC32.EXE

Identifying Who is Logged-into 11i

It can also be a challenge to identify Application users who are logged-into 11i and map their login to the process numbers supporting their login. The way I tie an 11i login to the unix processes servicing that connection is via the fnd_logins table. That table is only populated if you have the feature ‘Sign-On Audit’ turned onto at least ‘User’ level. This setting will force Oracle 11i to insert a row into the fnd_logins table each time a user logs into 11i. I’ve written a script called who_login.sql (see Exhibit 4-2) that maps the user’s login to the process numbers supporting their connection. The following is an example of who_login.sql results.

App DB Serv Form Serv

Login Nbr Process Parent

Name Connects PID PID Login Time

------------ -------- --------- --------- ------------

ACAMPELL 2 6918 6637 10-Aug 10:05

BRUCECHAVEZ 2 6339 19889 10-Aug 12:24

DEBBYBAKER 2 5856 4507 10-Aug 14:02

MIKEKAHN 1 14350 29856 10-Aug 10:43

MARYWONG 2 19007 6389 10-Aug 13:58

DOUGNELSON 2 6377 1252 10-Aug 10:39 (holding lock

DOUGNELSON 2 4696 3147 10-Aug 11:44 (needs lock

TOMOSULLIVAN 2 5962 4785 10-Aug 11:19

MADELINELEE 2 15003 692 10-Aug 11:14

...

In the above example, you can see the User’s 11i Application User Name is in the leftmost column. For example, the user DOUGNELSON, shows DB Server process-id (pid) 6377 and Forms Server Parent process-id 1252. The DB Server process is their database connection on the DB Server node. The column called ‘Form Serv Parent PID’ is the process number of the Forms Server process running on the Forms node supporting this user’s login to 11i. In unix, you can go to your Forms Server node, use grep to see the user’s forms session:

Running this command on your Forms node will show the specific Form Process for the above user:

ps –ef |grep 1252 (from the ‘Form Serv Parent PID column in above example)

This command returns results like:

applmgr 1252 8626 0 10:39:31 ? 0:08 f60webmx webfile=5,260,PID8626

To see all Forms processes run the following command in unix:

ps –ef |grep f60webmx

The ‘Monitor Users’ form under the System Administrator’s responsibility displays similar information but the who_login.sql has the added value that it maps the User’s login to their database connection and their Forms Server process to allow further research. As noted above in the User Login section of this paper, you need to run ‘End Time Stamp User Logins’ so that the information in your fnd_logins table does not incorrectly report users who are no longer logged-into 11i. It will still show users who have an orphan connection so that is very valuable. An orphan is left by an unclean exit but the database process still exists so the ‘End Time Stamp User Logins’ program will not mark that connection with an ‘end time’.

Determining who is holding a lock

There are a variety of reasons why you might have database locks that are blocking other activity. I run the script locktree.sql to check for Oracle sessions that are blocked by other activity. The locktree.sql script is a clone of Oracle’s script utllockt.sql with the addition of some formatting and a second query.
Query 1 shows lock contention and Query 2 lists all connections holding locks. This script is helpful in that the format of the output makes it very clear when there is lock contention. The leftmost process is the one holding the lock with those waiting for the lock nested below. In the sample locktree.lst below, session 126 is blocking session 104.

'Query 1: Show any sessions waiting on locks, lock holder is leftmost'

Sessions Lock Type Requested Lock Held Lock id1 Lock id2

---------- ------------ ---------- ---------- ---------- ----------

126 None

 104 Transaction Exclusive Exclusive 196625 131923

2 rows selected.

'Query 2: Show all locked objects'

 sid OWNER NAME Lock Held Requested Block Stat

----- ---------- -------------------- ---------- ---------- ------------

 15 APPLSYS FND_CONCURRENT_REQUE Row-S (SS) None Not Blocking

 19 APPLSYS FND_CONCURRENT_QUEUE Row-X (SX) None Not Blocking

 78 AP AP_INVOICES_ALL Row-S (SS) None Not Blocking

 78 AP AP_INVOICE_DISTRIBUT Row-S (SS) None Not Blocking

 104 AP AP_INVOICES_ALL Row-X (SX) None Not Blocking

 115 PA PA_DRAFT_INVOICES_AL Row-S (SS) None Not Blocking

 126 AP AP_INVOICES_ALL Row-X (SX) None Not Blocking

 175 ONT OE_ORDER_HEADERS_ALL Row-S (SS) None Not Blocking

One cause of lock contention is when a user gets hung within 11i and has to use the Windows Task Manager to do an ‘End Task’. This can result in an orphan database connection. Sometimes these orphan connections are still holding locks. In the case of an orphan connection, this is the process that may be holding locks that are blocking other activity. In my environment, Oracle Payables users sometimes have problems with hung connections and have had to ‘end’ their connections (using Task Manager, End Task) without leaving the application cleanly. This will leave their database connection still running and still holding locks. When a user contacts me that they are getting an error like “Could not reserve record”, I run these series of scripts. I run locktree.sql (see Exhibit 4-3) to see if any database session is holding a lock that is blocking other activity. I run list_sess.sql to relate the session number to OS process numbers. I then run who_login.sql to see which user’s login relates to the process holding the lock. I can then kill the database process (orphan) and the lock is released. In the above example, I see that session 126 is holding a blocking lock. From who_login.lst I see that it is the first login for ‘DOUGNELSON’. I can see that he is blocking his own new login, session 104, so I can safely kill unix process 6377 since it is an orphan process. Be extremely careful before taking any actions on what you believe are orphans.

I have also seen certain Concurrent Manager jobs that hold locks and block other activity. In that case, I usually start by running locktree.sql. Then I run list_sess.sql to see which unix processes relate to these locks. In the case of a Concurrent Manager job, the column labeled ‘Parent PID’ is the process number of the Concurrent Manager job (not the concurrent request id).

The locktree.sql script is also useful any time you need to research why something is running too long. By running locktree.sql, you can quickly determine whether your Oracle session is blocked by a conflicting lock, otherwise you need to do more time-consuming research for other causes of the slow performance.

Cleanup of temporary files

There are numerous temporary Operating System files that get created to support normal 11i functionality. These temporary files often do not get cleaned-up automatically by Oracle. It is important to cleanup these files since directories that run out of space can cause problems with processing and user access. Therefore, you will need to automate this file cleanup so that these directories do not grow indefinitely. I wrote Unix shell scripts that I run via the Unix crontab to automate this procedure at my site. I have a script that I run as the application owner (e.g. applmgr) and a script that runs as the database owner (e.g. oracle). Some of the directories that need to be cleaned-up are $APPLTMP, $REPORTS60_TMP, $FORMS60_OUTPUT and the Oracle utl_file_dir (found in the init.ora file). Note that temporary files need to be cleaned-up on all of your nodes. I use the same script to run on each node for the application owner files. Of course, you should test to confirm there is no negative impact from removing these files before installing in your Production environment.

Checking for invalid packages

Sometimes ‘invalid packages’ are too frequently blamed for problems. I have power users who seem to think that all problems are caused by invalid packages and that “Recompiling the Apps Schema” is a panacea. Even though most 11i problems have nothing to do with ‘invalid packages’, it still makes sense to routinely search for invalid packages. See Exhibit 5 for the apps_invalid.sql script that summarizes the invalid packages owned by the apps account. I’ve found that I must check for invalid packages each time that I apply a patch. If I find that the patch has caused invalid packages, then I add the ‘Compile Apps Schema’ step to the end of my patch install instructions for that patch.

Handling over 300 tablespaces and ‘Local’ Management

If you do a fresh install of 11i, over 300 separate tablespaces are created to hold the database objects. This can be daunting when you are used to managing fewer tablespaces. I have not taken any actions to reduce the total number of 11i tablespaces though the large number takes some getting used to. Messages in the Oracle Alert file can be very long if the message lists each tablespace

You will want to take advantage of 8i ‘Locally’ managed tablespaces since you will get performance benefits in reduced ST enqueue contention and more efficient extent management. To determine the state of your 11i tablespaces run the script ts_settings.sql in Exhibit 6. The columns to focus on are ALLOCATION_TYPE and EXTENT_MANAGEMENT. The following is an extract from my ts_settings.lst file:

Tablespace Max Ext Next Ext Pct Incr Ext_Mgmt Alloc_Type Status

---------- ----------- ----------- -------- ---------- ----------- -------

ABMD 505 204,800 0 LOCAL USER ONLINE

ABMX 505 204,800 0 LOCAL USER ONLINE

AKD 505 204,800 0 LOCAL USER ONLINE

AKX 505 204,800 0 LOCAL USER ONLINE

SSPD 505 204,800 0 LOCAL USER ONLINE

SSPX 505 204,800 0 LOCAL USER ONLINE

SYSTEM 505 16,384 50 DICTIONARY USER ONLINE

TEMP 1,048,576 0 LOCAL UNIFORM ONLINE

I have found that whether you did a fresh 11i install or an upgrade from a prior version, your tablespaces will usually be marked as ALLOCATION_TYPE = ‘USER’, even for ‘Locally Managed’ tablespaces. This is because whenever a tablespace originally started as a ‘DICTIONARY’ managed tablespace, it will always remain as ‘USER’ allocation type. This is good news for Oracle Apps DBAs. The type ‘USER’ means that each object’s individual STORAGE settings are still in affect. Most 11i tablespaces have between 100-300 objects per tablespace with an enormous variation in growth patterns. Some tablespaces like HR have over 700 tables. It would be very painful to try to develop uniform sizing with 10,000 tables and 20,000 indexes to manage. Therefore, you still will control an object’s next extent size by using the alter table …storage command as usual. It is still a good idea to migrate your tablespaces to ‘LOCAL’ management since you will get performance benefits even without uniform extent management. It can be confusing to see that your tablespace is ‘Locally’ managed but you don’t’ have uniform extent sizes. This is why it is important to look at both the EXTENT_MANAGEMENT and ALLOCATION_TYPE columns.

Another tablespace change that I recommend is to do a one-time cleanup to your tablespaces, tables and indexes to set the ‘PCTINCREASE’ to zero. Oracle delivers most objects and tablespaces set at 50% increase which can cause problems for a variety of reasons. You will need to take special effort switching the LOB objects storage settings using ALTER TABLE xyz MODIFY LOB(col_name) syntax as described in the ‘Adjusting Storage for Large Objects (LOBs)’ section above.
Managing new Temporary tablespace

You should take advantage of Locally managed Temporary Tablespaces and temporary datafiles for your 11i Temporary tablespaces. It is more efficient to use temporary datafiles for temporary tablespaces since they have less overhead, especially with extent management for sorts. When you create a tablespace in 8i using ‘Create Temporary Tablespace xyz’ syntax, a Locally managed Uniform extent-size temporary tablespace is created. The ‘CONTENTS’ column in dba_tablespaces for your temporary tablespace should show ‘TEMPORARY’. Note that temporary datafiles have different characteristics than permanent datafiles. You will need to use different scripts to control and monitor them. See Exhibit 7 for the script mon_temp.sql to monitor Temporary tablespace usage.

You cannot reference these temporary datafiles the same way when cloning a database or you’ll get errors. You will need to add a new procedure to your db clone technique to add temporary datafiles after your clone is complete. You will use the syntax:

alter tablespace xyz add tempfile '<file_name>' size nnnM’

When cloning, you will notice the following warning in your database alert file. You can ignore this message since it is a reminder that temporary datafiles are not in the control file so they get re-added later. The message in the alert file is like:

“Tablespace 'TEMP' #284 found in data dictionary, but not in the controlfile. Adding to controlfile.“

You also cannot reference these temporary datafiles when doing a hot backup or you will get errors. If you use RMAN or other Third-party database backup utilities, they should handle temporary datafiles properly and require no change on your part. Even though temporary datafiles require some change in your procedures, I believe that the increase in extent management efficiency is worth the effort.

Gather Schema Statistics

Oracle Applications 11i uses the Cost Based Optimizer (CBO). This requires that your database objects be analyzed so that the dictionary contains accurate statistics for ‘adequate’ 11i performance. You will want to routinely schedule the Concurrent Manager job called ‘Gather Schema Statistics’ to analyze your tables and indexes. You should run it with the parameter ‘All’. There is also a parameter called ‘Estimate Percent’ which determines the sample percentage. You can experiment with anything from 5% to 50% and see how long it takes. You should schedule this program during a very low use time. You also need to schedule it additional times for schemas that Oracle does not include within its definition of ‘All’. This includes all your custom schemas, plus schemas like noetix_sys, etc. See Exhibit 8 for a script called sum_not_analyzed.sql that summarizes schemas with objects that have not been analyzed. In addition, Oracle Apps has a script called bde_last_analyzed.sql that will give you extensive information about the state of statistics for your 11i objects. I find the output of this script too voluminous so I use my sum_not_analyzed.sql script instead for quick checks.

Triggering activity on multiple nodes

Your 11i implementation probably has more than one node. It took me a while to automate a database cold backup script that would automatically bring down the Application Server activity on a separate box. I needed to initiate all these actions from the unix account that owned the database on the Database Server machine. My company does not give DBAs Unix root access so I needed to work closely with the Unix system admin group to do the automation. I wrote a unix shell script that does the following:

1) Stop all activity on the Applications Server box (using Unix ssh command to allow Oracle account on DB Server box to connect as application owner on another box)

2) Stop all application activity on the DB Server box such as the Concurrent Manager and the Report Review Agent. (using ‘sudo’ command to execute the command as the applmgr user instead of the oracle user)

3) Shut down the database.

Pinning 11i Objects

Oracle uses space in the Shared Pool (within the System Global Area (SGA)) for stored packages, procedures, functions and triggers. You can pre-allocate space in the SGA for heavily used objects by ‘pinning’ them. Oracle Applications provides a script ($AD_TOP/sql/ADXGNPIN.sql) that pins all packages defined within 11i. You should not run this version of the script since there are over 17,000 packages and functions owned by the APPS account in 11i, of which your company will only run a small subset. It is not feasible or desirable to pin all of these objects. Most performance improvement can be gained from pinning only the large, frequently used packages. Pinned objects are expensive in terms of memory space, since other not-pinned objects need memory space, too. In general, do not pin rarely used objects since this could even decrease database performance.

You need to do ongoing analysis of the objects that your company is using and develop your own list of packages, procedures and functions to pin. You need to do this analysis after the database has been heavily used and has reached a stable state (preferably after being up for several days to a week). I shutdown my 11i Production database once a week on Saturday nights for a cold backup. Therefore, I get my best statistics on Friday before it is brought down since it has been up for 6 days. Since different logic is used at different times of the month, you should repeat this analysis from time to time. During 11i development and testing, characterize your package usage and build a script to call each time the database is restarted. This script should pin the specific objects that are warranted at your company. You want to automate the running of this script during database startup time so that these heavily used objects are pinned immediately after db startup. Periodically, I use sql scripts to do further analysis about packages that could benefit from being pinned or that no longer need to be pinned. See Exhibit 9 for examples of these scripts.

Taking Advantage of the new Alter Table Move command

With the Oracle 8i, you can now reorganize data in a table without using the export/import command. This is done using the command “alter table <tablename> move”. The move command is very useful since you can issue the command without much risk and while users are on the system. However, there are two major impacts of using this command that you must be prepared to deal with. The first issue is that all indexes on the table are marked as ‘UNUSABLE’. You will need to use the command ‘alter index <index name> rebuild’ so that the indexes are useable again. Users will get errors accessing the table until you rebuild all ‘UNUSABLE’ indexes. See Exhibit 10 for a script, rebuild_unusable.sql that dynamically creates a script to rebuild all indexes that have been marked as unusable. The second issue is that all statistics on the table that you move are dropped. You need to run ‘Gather Table Statistics’ for the table that you have ‘moved’.

One good use of the ‘move’ command is to reorganize the data in a table after doing a major delete. For instance, after I began using the new program ‘Message Purge’, I was able to use the command

“alter table ont.oe_processing_msgs move;”

This move freed-up 800 MB of space that the table no longer needed. The beginning of this paper lists several tables that should be checked for cleanup. If you are already live on 11i and find a table that has been filling with temp data, you may want to use this command to do a one-time cleanup of affected tables. You cannot use the ‘truncate table’ command on most of the tables because some rows still remain. You will first run the appropriate Concurrent Manager job to cleanup the old data, then use the alter table move command to reorganize the rows that remain in the table. Then rebuild indexes and finally gather statistics.

Conclusion

You can avoid many 11i support issues by scheduling standard Concurrent Programs to prevent unneeded data from growing indefinitely. I recommend that you review the list of Cleanup Concurrent Programs at the beginning of this paper in Figure 1. If you are not yet live on 11i, you should plan to schedule these cleanup programs when you go live as part of your standard schedule. If you are already live, research the state of your data and determine how many of these cleanup programs you need to start running routinely. You need to determine who within your company will do this research. This data analysis is often done by the Application System Administrator, the Application Database Administrator (DBA), or a technical support person.

Determine how you will research problems with Oracle sessions. You should check what level of ‘Sign-on Audit’ you are using to confirm that you can identify logged in users. Try the script who_login.sql in your environment to map 11i logins to their Oracle processes. Experiment with the locktree.sql script to confirm that you can recognize lock contention.

You may want to make numerous technical adjustments in your 11i environment. Confirm that you are taking advantage of ‘Locally Managed’ Tablespaces. Implement the new 8i ‘Temporary Tablespace’ capability. Try the new ‘alter table move’ command. Setup cleanup scripts to remove Operating System temporary files. Determine the frequency that you will run ‘Gather Schema Statistics’. Determine which 11i objects you should pin. Build a diagram (see figure 2) of your 11i physical environment to assist in understanding and supporting your specific 11i environment.

It is imperative that you first try all of these Concurrent Programs and DBA changes in a test environment before implementing in your Production environment. By proactive scheduling, hopefully you can avoid many of the problems I encountered with my new 11i installation.

About the Author

Lynne Paulus is an Oracle Applications Database Administrator at Fair, Isaac and Company. She began working as an Oracle Applications database administrator in 1990. The company she worked for at that time was a co-development partner for the Oracle Projects module. She began by supporting Oracle Applications Release 8.0 running on Oracle RDBMS 6 and has been involved in numerous Oracle Applications and RDBMS upgrades.

Exhibits

Exhibit 1: Check ICX Tables for temp login data

-- +===+

-- | FILENAME

-- | ck_icx.sql

-- |

-- | DESCRIPTION

-- | Show number rows older than x hrs in icx (Self Service) temporary tables

-- |

-- | NOTES

-- | This is set to select count(*) records over 4 hours old.

-- | You may refine this by altering the 4/24 to the number of

-- | hours you want to exclude from the count.

-- |

-- | HISTORY

-- | 26-Aug-2002 lpaulus Create to ck volume of rows in icx tables

-- +===+

spool ck_icx

prompt count all rows older than 4 hours in icx_sessions

SELECT count(*)

FROM icx.icx_sessions

WHERE creation_date < SYSDATE - 4/24;

prompt count all rows older than 4 hours in icx_text

SELECT count(*)

FROM icx.icx_text

WHERE timestamp < SYSDATE - 4/24;

prompt count all rows older than 4 hours in icx_failures

SELECT count(*)

FROM icx.icx_failures

WHERE creation_date < SYSDATE - 4/24;

prompt count all rows older than 4 hours in icx_transactions

SELECT count(*)

FROM icx.icx_transactions

WHERE creation_date < SYSDATE - 4/24;

prompt count all rows older than 4 hours in icx_context_results_temp

SELECT count(*)

FROM icx.icx_context_results_temp

WHERE datestamp < SYSDATE - 4/24;

prompt count all rows older than 4 hours in icx_requisitioner_info

SELECT count(*)

FROM icx.icx_requisitioner_info

WHERE creation_date < SYSDATE - 4/24;

spool

__

Exhibit 2: Check tables used by Sign-on Audit Functionality

-- +==+

-- Name: fnd_logins.sql

--

-- Purpose: Check rows affected by Profile option Sign-On:Audit Level

-- Any value but 'NONE' causes inserts into these tables

--

-- Created by: Lynne Paulus

--

-- +==+

spool fnd_logins

column login_name format a15 trunc

set pagesize 1000

prompt count all fnd_logins rows

SELECT count(*)

FROM applsys.fnd_logins

/

prompt count fnd_logins rows with no end date

SELECT count(*)

FROM applsys.fnd_logins

WHERE end_time IS NULL

/

-- Count rows where there is no end_time and login is not

-- a current active process in the database (User did non-clean exit)

prompt count fnd_logins rows with no end date and no Oracle process match

SELECT COUNT(login_id)

FROM applsys.fnd_logins

WHERE END_TIME IS NULL

AND ((spid,pid) NOT IN

 (SELECT spid,pid

 FROM apps.fnd_v$process)

OR (spid IS NULL AND pid IS NULL));

prompt count all fnd_login_responsibilities rows

SELECT COUNT(*)

FROM applsys.fnd_login_responsibilities

/

prompt count rows fnd_login_responsibilities where not valid fnd_logins rows

SELECT COUNT(login_id)

FROM applsys.fnd_login_responsibilities

WHERE end_time IS NULL

AND LOGIN_ID NOT IN

 (SELECT LOGIN_ID

 FROM applsys.fnd_logins

 WHERE end_time IS NULL)

/

prompt count all rows FROM fnd_login_resp_forms

SELECT COUNT(*)

FROM applsys.fnd_login_resp_forms

/

prompt count rows from fnd_login_resp_forms where not valid fnd_logins rows

SELECT COUNT(login_id)

FROM applsys.fnd_login_resp_forms

WHERE end_time IS NULL

AND login_id NOT IN

 (SELECT login_id

 FROM applsys.fnd_logins

 WHERE end_time IS NULL)

/

spool off

Exhibit 3: Check File-Export impact; fnd_lobs table, all LOBs in database

Script 3-1: fnd_lobs.sql, table holds data from File-Export, Attachments and Help Index

-- +==+

--

-- NAME: fnd_lobs.sql

--

-- Purpose: Monitor amount of data in fnd_lobs table. Table is used to

-- facilitate File-Export logic, Attachments and HELP text.

-- If too much data with PROGRAM_NAME = export, then schedule the

-- Concurrent Pgm, Purge Obsolete Generic File Data

--

-- Created by: Lynne Paulus

--

-- Change Log:

--

-- +==+

spool fnd_lobs

column file_id format 99999

column file_name format a30

column file_content_type format a20 trunc

prompt number of rows for each type

SELECT

 program_name

, count(*)

FROM applsys.fnd_lobs

GROUP BY program_name

/

prompt length of blob data stored for each type

SELECT

 program_name

, sum(dbms_lob.getlength(file_data)) length_blob

FROM applsys.fnd_lobs

GROUP BY program_name

/

prompt show oldest, newest rows in fnd_lobs table; export should be recent dates

SELECT

 program_name

, min(upload_date) min_load

, max(upload_date) max_load

FROM applsys.fnd_lobs

GROUP BY program_name

/

spool off

__
Script 3-2: alter_lob.sql Change storage on ‘BLOB’ table relating to File-Export data

--

-- script = alter_lob.sql

--

-- Purpose: Use special syntax to change storage on a lob

-- First must determine which base table and column the lob is

-- associated with

--

-- Created By: Lynne Paulus

ALTER TABLE applsys.fnd_lobs MODIFY LOB(file_data)

 (STORAGE (PCTINCREASE 0 NEXT 1M))

/

 __
Script 3-3: ck_lob.sql, List all LOBs in database

-- +==+

--

-- NAME: ck_lob.sql

--

-- Purpose: List all LOBs (BlOBs and CLOBs) in database, show table and column

--

-- Created by: Lynne Paulus

--

-- Change Log:

--

-- +==+

spool ck_lob

set lines 120

set pagesize 1000

column column_name format a12

column table_name format a18

column segment_name format a25

column index_name format a24

column owner format a8

SELECT owner, table_name, column_name, segment_name

, index_name

, chunk

FROM dba_lobs

ORDER BY owner, table_name

/

spool off

__

Exhibit 4: Map Oracle sessions, Processes and User logins

Script 4-1: list_sess.sql, List all connections to Oracle DB

-- +==+

--

-- Name: list_sess.sql

--

-- Description:

-- Lists all Oracle sessions including unix acct, Unix process id (pid)

-- and Parent Process Id (ppid).

--

-- Uses:

-- Script maps Oracle session numbers with unix pid numbers so is helpful

-- with scripts like locktree.sql.

-- Shows all Oracle Applications logins but for detail see who_login.sql

-- Shows the connection between a concurrent request parent

-- process (ppid) and the oracle process that is connected to the database.

--

-- Created by: Lynne Paulus

--

-- Change History:

--

-- +==+

SPOOL list_sess

set heading on

set pages 10000

set linesize 80

set space 1

column program format a25 trunc

column sid on heading 'Ora|Sess|id' format 999

column pid on heading 'Ora|Proc|id' format 999

column process on heading 'DB Serv|Process|PID' format 99999

column terminal on heading term format a6 trunc

column parent on heading 'Parent|PID' format a8

column osuser format a8

column username format a8

column p_addr format a10

ttitle on

ttitle 'Oracle Sessions, Processes and Parent Processes'

SELECT

 s.sid

, p.pid

, s.osuser

, s.username

, p.spid process

, s.process parent

, s.terminal

, s.program

FROM v$process p

, v$session s

WHERE rawtohex(s.paddr) = rawtohex(p.addr)

ORDER BY s.username, s.osuser,s.program,s.process

/

ttitle off

SELECT 'Total Processes ', COUNT(*) FROM v$process;

SELECT 'Total Sessions', COUNT(*) FROM v$session;

SPOOL OFF

__
Script 4-2: who_login.sql, Map 11i logins to database processes

-- +==+

--

-- Name: who_login.sql

--

-- Description:

-- Lists Oracle applications connections showing relationship between Unix

-- process numbers and the Application User login name.

--

-- Script can be helpful in identifying orphan unix processes.

-- These processes might be holding locks or using major resources after a

-- user has cancelled out of the application.

--

-- User access can only be monitored this way if the Profile Option

-- Sign-On:Audit has been set to at least 'USER' level audits.

-- There are often multiple entries in fnd_logins for a single user login,

-- but each of these connections shares the same process number. They are

-- grouped in this script into one row. See the COLUMN Nbr_connects below.

--

-- Script breaks on user_name so it is very clear when a user has more than

-- one separate Application login connection (blank space under Login Name).

--

-- Notes:

-- Multiple logins can mean different things:

-- 1) user maybe actively using more than one login (e.g. shared password

-- with another user or same user currently logged in more than once)

-- 2) user may have cancelled out of application (alt-ctl-del) and left

-- orphan unix process (these can be killed)

-- 3) User has cancelled out of appl leaving row in fnd_logins, original

-- unix orphan process has stopped on its own BUT new activity has reused

-- the same unix pid number (cannot kill these).

--

-- WARNING: You should never kill the old process without first confirming

-- that the unix process date matches that fnd_logins date shown in this

-- report. Check the unix process date using ps -ef |grep <pid number>

--

-- Created by: Lynne Paulus

--

-- Change Log:

-- 01-Oct-2001 lpaulus Modified for 11i

-- +==+

SPOOL who_login

SET pages 1000

SET linesize 80

COLUMN osuser format a8 heading 'OS User'

COLUMN process format 999999 on heading 'Form Serv|Parent|PID'

COLUMN ora_process format 999999 on heading 'DB Serv|Process|PID'

COLUMN user_name format a16 trunc heading 'App|Login|Name'

COLUMN Nbr_connects format 999 heading 'Nbr|Conns'

COLUMN login_time format a12 trunc heading 'Login Time'

BREAK ON user_name

ttitle 'Users logged into Oracle Application mapped to Processes'

SELECT

 fu.user_name

, COUNT(*) Nbr_connects

, p.spid ora_process

, s.process

, TO_CHAR(fl.start_time, 'dd-Mon hh24:mi') login_time

FROM

 apps.fnd_logins fl

, apps.fnd_user fu

, v$session s

, v$process p

WHERE fl.end_time IS NULL /* only show currently logged in users */

AND fl.user_id = fu.user_id

AND fl.spid = s.process

AND s.paddr = p.addr

GROUP BY

 fu.user_name

, p.spid

, s.process

, s.program

, TO_CHAR(fl.start_time, 'dd-Mon hh24:mi')

ORDER BY fu.user_name

, TO_CHAR(fl.start_time, 'dd-Mon hh24:mi')

/

SPOOL OFF

CLEAR BREAKS

__

Script 4-3: locktree.sql, Show database locks and lock contention

Rem $Header: utllockt.sql,v 1.2 1995/05/05 10:16:23 pgreenwa Exp $ locktree.sql

Rem

Rem Copyright (c) 1989 by Oracle Corporation

Rem NAME

Rem locktree (clone of $ORACLE_HOME/rdbms/util/utllockt.sql)

Rem

Rem FUNCTION - Print out the lock wait-for graph in tree structured fashion.

Rem This is useful for diagnosing systems that are hung on locks.

Rem NOTES

Rem MODIFIED

Rem lpaulus 01/02/02 - added column formats,tablespace,extra query at end

Rem pgreenwa 04/27/95 - fix column definitions for LOCK_HOLDERS

Rem pgreenwa 04/26/95 - modify lock_holders query to use new dba_locks f

Rem glumpkin 10/20/92 - Renamed from LOCKTREE.SQL

Rem jloaiza 05/24/91 - update for v7

Rem rlim 04/29/91 - change char to varchar2

Rem Loaiza 11/01/89 - Creation

Rem

/* Print out the lock wait-for graph in a tree structured fashion.

 *

 * This script prints the sessions in the system that are waiting for

 * locks, and the locks that they are waiting for. The printout is tree

 * structured. If a sessionid is printed immediately below and to the right

 * of another session, then it is waiting for that session. The session ids

 * printed at the left hand side of the page are the ones that everyone is

 * waiting for.

 *

 * For example, in the following printout session 9 is waiting for

 * session 8, 7 is waiting for 9, and 10 is waiting for 9.

 *

 * WAITING_SESSION TYPE MODE REQUESTED MODE HELD LOCK ID1 LOCK ID2

 * ----------------- ---- ----------------- ----------------- -------- --------

 * 8 NONE None None 0 0

 * 9 TX Share (S) Exclusive (X) 65547 16

 * 7 RW Exclusive (X) S/Row-X (SSX) 33554440 2

 * 10 RW Exclusive (X) S/Row-X (SSX) 33554440 2

 *

 * The lock information to the right of the session id describes the lock

 * that the session is waiting for (not the lock it is holding).

 *

 * Note that this is a script and not a set of view definitions because

 * connect-by is used in the implementation and therefore a temporary table

 * is created and dropped since you cannot do a join in a connect-by.

 *

 * This script has two small disadvantages. One, a table is created when

 * this script is run. To create a table a number of locks must be

 * acquired. This might cause the session running the script to get caught

 * in the lock problem it is trying to diagnose. Two, if a session waits on

 * a lock held by more than one session (share lock) then the wait-for graph

 * is no longer a tree and the conenct-by will show the session (and any

 * sessions waiting on it) several times.

 */

/* Select all sids waiting for a lock, the lock they are waiting on, and the

 * sid of the session that holds the lock.

 * UNION

 * The sids of all session holding locks that someone is waiting on that

 * are not themselves waiting for locks. These are included so that the roots

 * of the wait for graph (the sessions holding things up) will be displayed.

 */

SPOOL locktree

SET linesize 79

COL term format a7

COL username format a8 trunc

COL osuser format a8 trunc

COL IS_LOCKING format a20

COL PROG format a35 trunc

COL orapid format 999

COL syspid format 99999

COL last_convert on heading convert format 99999

COL session_id format 9999 on heading sid

COL owner format a10

COL name format a20 trunc

COL mode_requested on heading 'Requested' format a10

COL mode_held on heading 'Lock Held' format a10

COL blocking_others on heading 'Block Stat' format a12

COL waiting format a10 on heading 'Sessions'

COL lock_type format a12 on heading 'Lock Type'

COL lock_id1 format a10 on heading 'Lock id1'

COL lock_id2 format a10 on heading 'Lock id2'

drop table lock_holders;

create table LOCK_HOLDERS /* temporary table */

(

 waiting_session number,

 holding_session number,

 lock_type varchar2(26),

 mode_held varchar2(14),

 mode_requested varchar2(14),

 lock_id1 varchar2(22),

 lock_id2 varchar2(22)

) tablespace interim;

drop table dba_locks_temp;

create table dba_locks_temp tablespace interim as select * from dba_locks;

/* This is essentially a copy of the dba_waiters view but runs faster since

 * it caches the result of selecting from dba_locks.

 */

insert into lock_holders

 select w.session_id,

 h.session_id,

 w.lock_type,

 h.mode_held,

 w.mode_requested,

 w.lock_id1,

 w.lock_id2

 from dba_locks_temp w, dba_locks_temp h

 where h.blocking_others = 'Blocking'

 and h.mode_held != 'None'

 and h.mode_held != 'Null'

 and w.mode_requested != 'None'

 and w.lock_type = h.lock_type

 and w.lock_id1 = h.lock_id1

 and w.lock_id2 = h.lock_id2;

commit;

insert into lock_holders

 select holding_session, null, 'None', null, null, null, null

 from lock_holders

 minus

 select waiting_session, null, 'None', null, null, null, null

 from lock_holders;

commit;

/* Print out the result in a tree structured fashion */

prompt 'Query 1: Show any sessions waiting on locks, lock holder is leftmost'

select lpad(' ',3*(level-1)) || waiting_session waiting,

 lock_type,

 mode_requested,

 mode_held,

 lock_id1,

 lock_id2

 from lock_holders

connect by prior waiting_session = holding_session

 start with holding_session is null;

prompt 'Query 2: Show all locked objects'

SELECT

 SESSION_ID

, OWNER

, NAME

, MODE_HELD

, MODE_REQUESTED

, BLOCKING_OTHERS

FROM sys.dba_dml_locks;

SPOOL OFF

Exhibit 5: Check for invalid 11i Apps Objects

-- +==+

-- Script = apps_invalid.sql

--

-- Purpose: To list any invalid objects in the apps schema

--

-- Note: Helpful to run this script after applying a patch to confirm

-- that patch has not invalidated any objects. You may have a few

-- objects that are always invalid that are not used.

--

-- Resolution: If objects are invalid, Use adadmin on the DB node selecting

-- 'Compile APPS Schema'. Then run this script again to see what remains

--

-- Created by: Lynne Paulus

--

-- +==+

SPOOL apps_invalid

set pagesize 1000

col owner format a8

col object_type format a12

col object_name format a30

SELECT

 owner, object_name, object_type, created, status

FROM dba_objects

WHERE owner = 'APPS'

AND status = 'INVALID'

ORDER BY object_name, object_type

/

SPOOL OFF

 __

Exhibit 6: Check Tablespaces for Extent Management Settings

-- +==+

-- Name: ts_settings.sql

--

-- Purpose: Show Tablespace default settings, pay special attention to

-- pct increase, next_extent, allocation_type

--

-- Note: The allocation_type determines how extents will be allocated for

-- objects in this tablespace. If it is 'USER' and extent_management is set

-- to 'LOCAL' is means this tablespace was migrated to local, did not get

-- originally created as local. The extent management will be as if it was

-- dictionary managed (e.g. each object will have next_extent, pct_increase,

-- etc that control how that specific objects grows). The tablespace will

-- get performance benefits from being locally managed with no ST enqueue

-- contention and more efficient extent mgmt.

--

-- Created by: Lynne Paulus

--

-- Change Log:

--

-- +==+

SPOOL ts_settings

set linesize 80

set pagesize 1000

col "Tablespace" format A10

col "Init Ext" format 999,999,999

col "Next Ext" format 99,999,999

col "Max Ext" format 9999999999

col "Min Ext" format 999

col "Pct Incr" format 99999

col "Alloc_Type" format A11

col "Status" format A7

SELECT

 tablespace_name "Tablespace"

, max_extents "Max Ext"

, next_extent "Next Ext"

, pct_increase "Pct Incr"

, extent_management "Ext_Mgmt"

, allocation_type "Alloc_Type"

, status "Status"

FROM dba_tablespaces

ORDER BY tablespace_name

/

SPOOL OFF

__

Exhibit 7: Monitor Temporary Tablespaces

-- +==+

--

-- Name: mon_temp.sql

--

-- Purpose: Monitor temp tablespace that is of type 'TEMPORARY'

--

-- Created by: Lynne Paulus

--

-- Change Log:

-- 04-Apr-2002 lpaulus Revised for 8i Temporary Tablespaces

-- +==+

spool mon_temp

ttitle off

set termout on

set feedback on

col tablespace format a4 trunc heading 'TS'

col sid format 999

col username format a6 trunc

col osuser format a6 trunc

col bytes format 999,999,999

col extents format 999 heading 'EXTs'

col initial_extent format 999,999,999 heading 'INITIAL'

col next_extent format 999,999,999 heading 'NEXT'

col pct_increase format 99 heading 'PCT'

col segment_name format a10 trunc heading 'SEG NAME'

col extent_size on heading 'Ext|Size' format 9999

col current_users on heading 'Curr|Users' format 9999

col total_extents on heading 'Tot|Exts' format 9999

col used_extents on heading 'Used|Exts' format 9999

col free_extents on heading 'Free|Exts' format 9999

col added_extents on heading 'Add|Exts' format 9999

col max_used_blocks on heading 'Max|Used|Blks' format 999999

col session_addr on heading 'Sess|Addr'

col session_num on heading 'Sess|Num' format 9999

col tablespace on heading 'TS|Name' format a4

col segtype on heading 'Seg|Type' format a5

col segfile# on heading 'Seg|File#' format 99999

col segblk# on heading 'Seg|BLK#' format 9999999

SELECT

 substr(to_char(sysdate,'DD-Mon-YY HH24:MI:SS'),1,15) TIME_RUN

FROM dual

/

prompt Activity in v$sort_usage

SELECT

 vs.sid

, vs.username

, vs.osuser

, vsu.session_num

, vsu.tablespace

, vsu.contents

, vsu.segtype

, vsu.SEGFILE#

, sum(vsu.EXTENTS) sum_extents

, sum(vsu.BLOCKS) sum_blocks

FROM v$session vs

, v$sort_usage vsu

WHERE vs.saddr=vsu.session_addr

GROUP BY

 vs.sid

, vs.username

, vs.osuser

, vsu.session_num

, vsu.tablespace

, vsu.contents

, vsu.segtype

, vsu.SEGFILE#

ORDER BY vs.sid

/

prompt Sum of activity in v$sort_usage

SELECT

 sum(extents) tot_extents

FROM v$sort_usage

/

prompt v$sort_segment - information about every sort segment in instance

SELECT

 tablespace_name

, extent_size

, current_users

, free_extents

, total_extents

, used_extents

, max_used_blocks

, added_extents

FROM v$sort_segment

ORDER BY tablespace_name

/

prompt info from v$temp_space_header

SELECT

 *

FROM v$temp_space_header

/

spool off

clear breaks

__

Exhibit 8: Check for unanalyzed Objects

-- +==+

--

-- Name: sum_not_analyzed.sql

--

-- Purpose: Overview of tables that have not been analyzed plus min and max

-- analysis dates

--

-- Note:

-- Exclude temporary tables since they do not get analyzed so always lack stats

--

-- Created by: Lynne Paulus

--

-- Change Log:

--

-- +==+

spool sum_not_analyzed

set pagesize 1000

SELECT sysdate

FROM dual;

SELECT

 owner

, count(*) Nbr_Unanalyzed

FROM dba_tables

WHERE last_analyzed is null

AND owner != 'SYS'

AND temporary != 'Y'

GROUP BY owner

ORDER BY owner

/

prompt Show oldest AND newest analyzed dates

SELECT

 MIN(last_analyzed)

 ,MAX(last_analyzed)

FROM dba_tables

WHERE last_analyzed IS NOT NULL

AND owner != 'SYS'

AND temporary != 'Y'

/

spool off

__

Exhibit 9: Check for Objects to Pin in SGA

Query 9-1: ckpin.sql

-- +==+

--

-- Name ckpin.sql - Query the SGA to determine pinned objects

--

-- Description

-- Query library cache in shared_pool area to determine space used by objects

-- AND whether they have been pinned. Shows high level of detail

-- Script has 5 queries from different perspectives

--

-- Created by: Lynne Paulus

--

-- Change Log

-- 30-Aug-2002 L Paulus Revised

-- +==+

spool ckpin

set lines 79

set pagesize 5000

set termout off

column type format a13

column owner format a10

column name format a40

column Object format a34

column loads format 9999

column execs format 999999

column executions format 999,999,999

column kept format a4

column "TOTAL SPACE (K)" format a20

column sharable_mem format 99,999,999

column "Pinned" format a14

ttitle ' Query 1: Objects in SGA sorted by highest executions '

SELECT owner || '.' || name Object

 , type

 , to_char(sharable_mem/1024,'9,999.9') "SPACE(K)"

 , loads

 , executions execs

 , kept

FROM v$db_object_cache

WHERE type in ('PACKAGE','FUNCTION', 'PROCEDURE', 'TRIGGER')

ORDER BY execs DESC

/

-- ++

-- Reloads summary

-- Reloads can be damaging, memory has to be shuffled within shared pool area

-- to make way for a reload of the object.

prompt 'Query 2: Reloads into Shared Pool - Most Loads First'

ttitle 'Query 2: Reloads into Shared Pool - Most Loads First'

SELECT owner, name||' - '||type name, loads

FROM v$db_object_cache

WHERE loads > 1

AND type IN ('PACKAGE', 'FUNCTION', 'PROCEDURE', 'TRIGGER', 'SEQUENCE')

ORDER BY loads DESC

/

ttitle 'Query 3: Memory Usage of Large Objects in Shared Pool - Biggest First'

SELECT

 name||' - '||type name, sharable_mem ,executions execs

, decode(substr(kept,1,1),'Y', ' ', '<<< Not Pinned') "Pinned"

FROM v$db_object_cache

WHERE sharable_mem > 100000

 AND type in ('PACKAGE', 'PACKAGE BODY', 'FUNCTION', 'PROCEDURE', 'TRIGGER')

ORDER BY sharable_mem DESC

/

-- +++

-- List non-pinned objects used heavily

-- Adjust executions threshold as needed, edit line executions > xxxx

--

prompt Query 4: Non-pinned objects used heavily,adjust executions threshold as n

eeded

ttitle 'Query 4: List non-pinned objects used alot - consider pinning these'

SELECT owner || '.' || name OBJECT

, type

, to_char(sharable_mem/1024,'9,999.9') "SPACE(K)"

, loads

, executions execs

, kept

FROM v$db_object_cache

WHERE kept = 'NO'

 AND owner != 'SYS'

 AND executions > 5000

ORDER BY execs desc

/

-- ++

--

-- Display total Object Cache Memory

--

ttitle 'Query 5: Total Memory Used by Cached Objects'

SELECT to_char(sum(sharable_mem)/1024,'9,999,999.9') "TOTAL SPACE (K)"

FROM v$db_object_cache

/

spool off

ttitle off

set termout on

__

Query 9-2: add_pin.sql, Build script that pins Heavily used objects

-- +==+

--

-- NAME

-- add_pin.sql

--

-- Purpose: Run against db after it has been up for several days

-- Edit the line with 'and executions > 500' based on how aggressive

-- you want to be about pinning packages that have been executed many

-- times. Add these lines to a standard script run each time

-- that the database is started up.

-- Created by: Lynne Paulus

--

-- Change Log

-- 02-Aug-2002 lpaulus Created

-- 09-Sep-2002 lpaulus Revised logic for sequences and triggers

-- +==+

spool add_pin

set lines 79

set pagesize 5000

set head off

set feedback off

SELECT 'execute dbms_shared_pool.keep('''|| owner ||'.'|| name ||''');'

FROM v$db_object_cache

WHERE type IN ('PACKAGE', 'PROCEDURE', 'FUNCTION')

 AND kept = 'NO'

 AND executions > 500

ORDER BY name

/

-- Special logic for DB Triggers, pass R parameter

SELECT

'execute dbms_shared_pool.keep('''||owner||'.'||name|| ''',''R'');'

FROM v$db_object_cache

WHERE executions > 500

AND type = ('TRIGGER')

AND kept = 'NO'

AND owner != 'SYS'

ORDER BY name

/

-- Special logic for Sequences, pass Q parameter

SELECT

'execute dbms_shared_pool.keep('''||owner||'.'||name|| ''',''Q'');'

FROM v$db_object_cache

WHERE executions > 500

AND type = ('SEQUENCE')

AND kept = 'NO'

AND owner != 'SYS'

ORDER BY name

/

set head on

set feedback on

spool off

__

Exhibit 10: Cleanup Unusable Indexes after Move command

-- +==+

--

-- Name: rebuild_unusable.sql

--

-- Purpose: Run to rebuild any index that is currently marked as 'UNUSABLE'.

-- Especially important to run after using 'ALTER TABLE MOVE' command

--

-- Created by: Lynne Paulus

--

-- Change Log:

-- +==+

spool rebuild_u.sql

set head off

SELECT 'alter index '||owner||'.'||index_name||' rebuild;'

FROM dba_indexes

WHERE status = 'UNUSABLE'

/

spool off

set head on

prompt run rebuild_u.sql after script runs to do rebuild all listed indexes

OAUG North America Fall 2002

Page- 14 -

_1093778104.vsd

